Steven Henry, Chris Gillum

CSE 403 – Winter Quarter

Life Cycle Objectives

Arena: a Multi-player Battle Simulation

Operational Concepts - What is it?

We propose to make a multi-player role-playing game (RPG) that arranges scenarios with two or more combatants (human players) split into two even teams. This [eventually] two-dimensional, turn-based melee features only the combative aspect of today’s popular RPGs. The game does not include the adventure aspect, which normally involves exploring worlds and either collecting treasure or interacting with non-player characters along the way, nor does it attempt to develop a story.

Each player owns one account, and therefore one customizable character that can be developed through game play. Character progress will be saved upon logging out, and may be reloaded each time a registered user logs in. Once ready to fight, players may decide their own teams or let the game server choose for them. After battle, players are awarded money or items based on their performance, which can then be used to upgrade their characters for future encounters.

We assume that users of this product will be non-malicious (e.g., hacking the game server to edit characters) and will have reliable connections to the Internet. Additionally, we expect players to be able to understand the rules of the game, but no technical expertise is required to play.
System Requirements – What does it do for us?

Users will be provided an intuitive, windowed GUI client that will serve as the primary interaction with the game via the game server. Assuming a stable Internet connection, the client will always be connected as soon as the user logs into the game server. While connected, the client will also handle character customization and save any changes automatically.

The game server itself will manage dozens of simultaneous connections without stuttering. It will also maintain every user account and valid game action, along with helpful battle statistics to summarize character profiles. Finally, the server will facilitate simple chatting among players, both before and during battle. Players may chat with all combatants or simply those on their team.

Initially, a maximum of four players will be allowed per game, and there will be no animation of character actions during battle. Character actions and attributes themselves will also be very limited initially, as will the number of available skills, items, and battle rewards. These aspects are likely to grow as the product develops. Our priorities, in decreasing order of importance, are to:

1. Make a functional client GUI.
2. Construct the web server database.
3. Implement the client-server interface.
4. Enhance graphics, character detail, and other extras.

System and Software Architecture – How is it done?

We have specified a 3-tier software architecture, involving a client GUI, web service interface, and database backend. Clients will request from or report to the web service, which in turn communicates directly with the underlying database. Clients must support the .NET framework, as it specifies the interaction between clients and web service (implemented in ASP.NET). For this reason, we chose C# as the primary development language for this application. We chose Microsoft SQL Server as the database backend because it, too, is fully supported by the .NET framework. Conveniently enough, the web service and database backend will be hosted by the same central computer.

The .NET framework supports other languages, but our development team will have less to learn when working with C#, as opposed to C++ or Visual Basic, because previous course work provided an introduction to Java, which is closer to C#. ASP.NET was chosen because our development environment (Microsoft Visual Studio) automates much of the work involved. This is not true with other web languages, such as PHP or JSP, so those options were less desirable. Finally, Oracle is less available to students (and thus the developers), whereas SQL Server is freely downloadable; MySQL, another alternative, possessed unwanted limitations on database implementation. While the abovementioned alternatives were not totally infeasible, they were also not the optimal choices for this project.
Lifecycle Plan – Who wants it? Who will support it?

The product is a game, so it will most appeal to any who favor computer entertainment, especially of the multi-player variety. This could include a few friends wanting to play against each other for fun, or for more serious, tournament-based game play. In any case, those that enjoy fighting games and upgrading characters will probably take a liking to this product.

During development, the client GUI will evolve the most of any component, and its primary stakeholders will be the developers and marketers involved, which are actually the same people, in this case. After release, the server will need to be maintained (deleting unused accounts, debugging backend issues, etc.), and if subsequent versions are released, its capacity may need to be expanded to incorporate the increased scale of combat. Additionally, an auto-update feature will be added to clients to ensure that all players’ versions match. Once correctly implemented, the web service should be self-sufficient.
Feasibility Rationale – Is this really true?

The idea is not so farfetched. We do not promise outstanding graphics or state-of-the-art password security, both of which could consume considerable amounts of development time. Instead, we intend to focus on the client-server interaction, followed by the game itself. The biggest risk in this project is feature creep; provided that we do not lose focus on the game’s mechanics and implementation themselves, we should be safe from this risk. On the opposite side, if there are too few features, or the game is too simple, users will quickly grow bored of playing, and the product will be useless.
